Publications

University of Missouri

17. Brorsen, K.R. Reproducing global potential energy surfaces with continuous-filter convolutional neural networks. J. Chem. Phys. 2019, 150 (20), 204104.

Prior to University of Missouri

16. Brorsen, K.R.; Schneider, P.E., Hammes-Schiffer, S. Alternative forms and transferability of electron-proton correlation functionals in nuclear-electronic orbital density functional theory. J. Chem. Phys. 2018, 149 (4), 044110. JCP Editors’ Pick Article

15. Yang, Y.; Brorsen, K.R.; Pak, M.V.; Culpitt, T.; Hammes-Schiffer, S. Development of a Practical Multicomponent Density Functional for Electron-Proton Correlation to Produce Accurate Proton Densities. J. Chem. Phys. 2017, 147 (11), 114113.

14. Brorsen, K.R.; Yang, Y.; Hammes-Schiffer, S. Multicomponent Density Functional Theory: Impact of Nuclear Quantum Effects on Proton Affinities and Geometries. J. Phys. Chem. Lett. 2017, 8 (15), 3488-3493.

13. Culpitt, T.; Brorsen, K.R.; Hammes-Schiffer, S. Density Theory Embedding with the Orthogonality Constrained Basis Set Expansion Procedure. J. Chem. Phys. 2017, 146 (21), 211101. JCP Editors’ Pick Article

12. Brorsen, K. R.; Yang, Y.; Pak, M.V.; Hammes-Schiffer, S. Is the Accuracy of Density Functional Theory for Atomization Energies and Densities in Bonding Regions Correlated? J. Phys. Chem. Lett. 2017, 8 (9), 2076-2081. Science Magazine Editors’ Choice Article

11. Brorsen, K. R.; Pak, M.V.; Hammes-Schiffer, S. Calculation of Positron Binding Energies and Electron-Positron Annihilation Rates for Atomic Systems with the Reduced Explicitly Correlated Hartree-Fock Method in the Nuclear-Electronic Orbital Framework. J. Phys. Chem. A. 2016, 121 (2), 515-522.

10. Culpitt, T.; Brorsen, K. R.; Pak, M. V.; Hammes-Schiffer, S. Multicomponent Density Functional Theory Embedding Formulation. J. Chem. Phys. 2016, 145 (4), 044106.

9. Brorsen, K. R.; Sirjoosingh, A.; Pak, M. V.; Hammes-Schiffer, S. Nuclear-Electronic Orbital Reduced Explicitly Correlated Hartree-Fock Approach: Restricted Basis Sets and Open-Shell Systems. J. Chem. Phys. 2015, 142 (21), 214108.

8. Sirjoosingh, A.; Pak, M. V.; Brorsen, K. R.; Hammes-Schiffer, S. Quantum Treatment of Protons with the Reduced Explicitly Correlated Hartree-Fock Approach. J. Chem. Phys. 2015, 142 (21), 214107.

7. Pruitt, S. R.; Brorsen, K. R.; Gordon, M. S. Ab Initio Investigation of the Aqueous Solvation of the Nitrate Ion. Phys. Chem. Chem. Phys. 2015, 17 (40), 27027-27034.

6. Brorsen, K. R.; Willow, S. Y.; Xantheas, S. S.; Gordon, M. S. The Melting Temperature of Liquid Water with the Effective Fragment Potential. J. Phys. Chem. Lett. 2015, 6 (18), 3555-3559.

5. Pruitt, S. R.; Bertoni, C.; Brorsen, K. R.; Gordon, M. S. Efficient and Accurate Fragmentation Methods. Acc. Chem. Res. 2014, 47 (9), 2786-2794.

4. Brorsen, K. R.; Zahariev, F.; Nakata, H.; Fedorov, D. G.; Gordon, M. S. Analytic Gradient for Density Functional Theory Based on the Fragment Molecular Orbital Method. J. Chem. Theory Comput. 2014, 10 (12), 5297-5307.

3. Brorsen, K. R.; Pruitt, S. R.; Gordon, M. S. Surface Affinity of the Hydronium Ion: the Effective Fragment Potential and Umbrella Sampling. J. Phys. Chem. B 2014, 118 (49), 14382-14387.

2. Brorsen, K. R.; Minezawa, N.; Xu, F.; Windus, T. L.; Gordon, M. S. Fragment Molecular Orbital Molecular Dynamics with the Fully Analytic Energy Gradient. J. Chem. Theory Comput. 2012, 8 (12), 5008-5012.

1. Nagata, T.; Brorsen, K. R.; Fedorov, D. G.; Kitaura, K.; Gordon, M. S. Fully Analytic Energy Gradient in the Fragment Molecular Orbital Method. J. Chem. Phys. 2011, 134 (12), 124115.